
NZPC 2023: 100-point problem editorials
version 0.1

Problem M: Molecules (Part 2)

This problem can be solved using maximum flow or modified bipartite matching.

To solve using max flow: Partition the atoms into two groups in a checkerboard pattern. Construct
edges with capacity 1 between every pair of adjacent atoms (note that each edges will be between
an atom in the first group and an atom in the second group). Create a "source" node and construct
edges from the source node to each atom in the first group, with capacity equal to the valence of
the atom. Likewise, create a "sink" node and construct edges from each atom in the second group
to a sink node, with capacity equal to the valence of the atom. Then the grid is valid if and only if
the maximum flow from the source to the sink is equal to expected number of bonds, which is half
of the sum of the valences. (The edges between the two groups that have flow correspond to
bonds; the capacities ensure the constraints of the problem are satisfied.) Using the Ford–
Fulkerson algorithm, the time complexity is O(E*f) where E = O(r*c) is the number of edges and f =
O(r*c) is the maximum flow.

To solve using bipartite matching: Partition the atoms in a checkerboard pattern, and use a
modified maximum bipartite matching algorithm where instead of allowing each node (atom) to be
incident to at most one selected edge, the number of allowed edges is the valence of the atom. As
above, the grid is valid iff the size of the maximum matching is equal to the expected number of
bonds.

This problem was from the 2002 NZ Programming Contest.

Problem N: Faucet Flow

This is an ad-hoc problem that appears simple at first, but turns out to have some very tricky
cases.

We start by determining whether the water will first spill over the left edge (i.e. the leftmost divider)
or the right edge. Let maxL be the height of the highest divider to the left of the faucet, and let
maxR be the height of the highest divider to the right. If maxL < maxR then the water will spill over
the left edge first, and if maxL > maxR then the water will spill over the right edge.

The case where maxL = maxR trickier. Let a be the location of the closest divider to the left of the
faucet of height maxL, and let b be the location of the closest divider to the right of the faucet of
height maxL (= maxR). The water will first fill up the "middle" section between a and b. Next, it will
spill over the two dividers at a and b simultaneously (with half the flow rate over each), and
continue until it spills over one of the edges. To determine which edge, we can compute the
capacity of each side (the volume of water at the instant where water would spill over the edge).
This turns out to be rather easy, because the water will form a simple series of steps: we can start
from the edge and work our way inward until we reach a or b, keeping track of the highest divider
seen so far; this will be the height of the water. Summing these heights (and multiplying by two
because that's the gap between dividers) gives the capacity. The water will first spill out over the
side that has the smaller capacity.

This also lets us compute the time for the case where maxL = maxR: it will be the time taken to fill
up the middle section (which is simply the volume of the rectangular region), plus the time taken to
fill the smaller of the two capacities (which is simply double the capacity, because the flow rate is
halved).

https://en.wikipedia.org/wiki/Maximum_flow_problem
https://cp-algorithms.com/graph/kuhn_maximum_bipartite_matching.html
https://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm

The last part is to compute the time for the case where maxL < maxR (the case where maxL >
maxR is symmetric and can be handled by reversing the input). Let a be as above and let c be the
location of the closest divider to the right of the faucet that has height strictly greater than maxL. It
is tempting to think that the water will fill the region between a and c up to height maxL, but that is
not necessarily the case: if there is a divider of height maxL between the faucet and c, then the
water will first fill up to that divider, and then it will spill over both sides simultaneously and may not
fill all the way to c. So the algorithm is as follows:

A: If there is no divider of height maxL between the faucet and c, compute the volume by scanning
from the left edge to c, keeping track of the highest divider seen so far and summing as above.

B: Otherwise, let b be the location of the closest divider to the right of the faucet of height maxL.
The water will first fill up the region between a and b (the time taken for this part is trivial to
compute), then it will spill over the two dividers at a and b simultaneously (with half the flow rate
over each). Next, there are two sub-cases to consider:

B1: If the capacity to the left of a is smaller than the capacity of the rectangular region between b
and c, then the water will spill over both a and b at half the flow rate until it spills over the left edge.
The time taken is double the capacity to the left of a.

B2: Otherwise, the water will spill over both a and b at half the flow rate until it fills the rectangular
region between b and c; then, it will fill the remaining capacity to the left of a (at the full flow rate)
until it spills over the left edge. The time taken can be computed using careful arithmetic.

This problem was from the Waterloo ACM Programming Contest, 21 September, 2002.

Problem O: Lambda Lifting

This is a real-life problem that was first described and solved by Thomas Johnsson in 1985[1];
improvements were made over a series of papers ([2], [3], [4]).

This editorial focuses on the algorithmic problem of determining the minimal set of additional
parameters. The full solution involves a considerable amount of additional work (parsing, resolving
identifiers, building the call graph, identifying free (non-local) variables, and printing the output); but
that work is fairly straightforward so there is not much to discussed.

We begin by describing some approaches that don't work (A, B). Then we describe a simple
correct approach (C); it is slow, but fast enough for the bounds in this problem. We also point out
an edge case relating to dead code (D). Then, as a bonus, we give a very brief overview of the
algorithms found in the literature, which are rather complex (E), and finally we describe a simple
and fast algorithm (F) which is not found in the literature.

A. If it weren't for the constraint that the set of additional parameters must be minimal, the simplest
approach would be as follows: For each function, collect all the parameters of all its enclosing
functions, and add them as the additional parameters. This would produce a syntactically valid
program when the functions are lifted to global scope, however it may introduce unnecessary
parameters. One might try to fix this by only introducing parameters if they are referenced in the
function, however this can fail because a function may refer to a parameter indirectly: in Sample
Input 2, the function f requires parameter b even though f never refers to b directly, because f
calls g which refers to b. What we require is the transitive closure.

B. The next approach (which also doesn't quite work) uses a top-down recursive algorithm: to
determine the additional parameters of a function f, take the union of

the parameters referenced directly in the expression of f, and
the additional parameters of all the function called from f, computed recursively;

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.4346
https://en.wikipedia.org/wiki/Non-local_variable
https://en.wikipedia.org/wiki/Transitive_closure#In_graph_theory

then remove the parameters that are declared in f itself, and the resulting set gives the additional
parameters for f. The issue with this approach is that fails on mutually recursive functions: if f calls
g and g calls f, the algorithm would recurse infinitely. (Aside: It is possible to use a smarter
implementation that stops when it detects a cycle. That would produce a correct result for the first
function, but the additional parameters computed while processing other functions recursively may
be incorrect – the parameters won't get propagated all the way around the cycle. Since the bounds
in the problem are small, this could be fixed by invoking the algorithm separately on each function,
without reusing the partial results across invocations. But approach C that follows is simpler.)

C. We now give a simple and correct approach as pseudocode. It uses the same propagation rules
as B, but it propagates the parameters iteratively instead of using recursion.

for f in all_functions:

 additional_params[f] = the parameters referenced in the expression of f,

 excluding the parameters of f

made_changes = true

while made_changes:

 made_changes = false

 for f in all_functions:

 for g in functions called from f:

 for v in additional_parameters[f]:

 if v is not in additional_parameters[f],

 and v is not in the original parameters of f:

 add v to additional_parameters[f]

 made_changes = true

This algorithm is guaranteed to eventually terminate, and when it does all the sets of additional
parameters will be correct. The time complexity is O(V×C×F), where V is the number of
parameters, C is the number of call expressions, and F is the number of functions. This is because
the innermost loop will have at most V iterations each time; the loops over f and g iterate over all
the call expressions, so together will have C iterations each time; and the outer while loop can
have at most F iterations until all parameters are propagated to all functions. This time complexity
is not optimal, but is fast enough for the bounds in this problem.

D. An important edge case is the presence of dead code. Consider the following input program:

func main (a)

 func f ()

 func g ()

 a

 end

 1 + 1

 end

 f ()

end

In this program, the function g refers to the parameter a and hence requires it as an additional
parameter; however, the function f does not require a as an additional parameter: only parameters
referenced in the expression of the function (directly or indirectly) are required, and in the case of f
the expression is 1 + 1 (which does not reference a). The fact that a appears in a nested function
definition within f is irrelevant.

E. Now for a very brief overview of the algorithms found in the literature: The original algorithm
given in Johnsson's paper[1] is O(n3) where n is the size of the input program. It is based on
setting up a system of recursive equations (equivalent to the rules in B) and then solving it using
repeated substitution. Subsequently, [2] tried to improve the time complexity to O(n2 by
decomposing the call graph into strongly-connected components (SCCs); it collapses each SCC
into a single node, and assigns all the functions in an SCC the same set of parameters; this
eliminates cycles and allows the recursive algorithm (B) to be used. However, it was later
discovered[3] that this approach does not produce the minimal set of parameters in some cases.

https://en.wikipedia.org/wiki/Strongly_connected_component

The final algorithm from the literature[4] fixes that issue using dominators while retaining the O(n2)
time complexity; it's fairly complicated.

F. It turns out that there is a simpler algorithm with time complexity O(n2). The key observation is
that it's much easier to only consider one parameter at a time (and use multiple passes over the
call graph; thankfully it turns out that this isn't any slower than handling all the parameters in a
single pass over the call graph). The algorithm is as follows:

for v in all_parameters:

 Perform a depth-first traversal (DFS):

 Start from the functions that reference v in their expression,

 and propagate to the callers of functions,

 but do not propagate to the function in which v is declared.

 Add v as an additional parameter of the functions traversed by the DFS.

The worst-case time complexity is O(V×C) where V is the number of parameters and C is the
number of call expressions. This is because a single DFS is O(E) where E = C is the number of
edges, and the number of DFS's is V. Since there exist cases where the size of the output is
O(V×C), this worst-case time complexity is optimal.

It is possible to go further and show that the time complexity is O(len(input) + len(output)), plus the
time taken to sort the additional parameters. This can be proven by matching each operation of the
DFS's to a unique token in the output.

[1]: Johnsson, T. (1985). Lambda lifting: Transforming programs to recursive equations
[2]: Danvy, O., & Schultz, U. P. (2002, September). 🔒Lambda-lifting in quadratic time. In
International Symposium on Functional and Logic Programming (pp. 134-151). Springer Berlin
Heidelberg.
[3]: Morazán, M. T., & Mucha, B. (2006). Improved Graph-Based Lambda Lifting. In Software
Engineering Research and Practice, SERP 2006 (pp. 896-902).
[4]: Morazán, M. T., & Schultz, U. P. (2008). 🔒Optimal Lambda Lifting in Quadratic Time. In
Implementation and Application of Functional Languages, IFL 2007 (pp. 37-56). Springer Berlin
Heidelberg.

Problem P: Losing Lakes

This is a computational geometry problem which does not require a fast algorithm but does require
considerable attention to detail.

Firstly, note that the orientation of the polygons in the input is unspecified – the points may be
given in clockwise or counterclockwise order. The orientation can be determined by computing the
signed area of the polygon; a positive value means the points are in counterclockwise order, and
negative means clockwise. It may be helpful to reverse the points to ensure a particular orientation.

We only consider a single lake, because multiple lakes can be handled independently. We can find
all the intersections between the borders of the lava and the lake by using a line segment
intersection test (e.g. simultaneous equations or cross product) on each line segment of the lava
against each line segment of the lake. We can also identify the ordering of these intersections
around the border of the lake, and likewise their order around the border of the lava (this requires a
little care when there are multiple intersections on a single line segment).

Imagine walking along the border of the lake; notice how the parts between intersections with the
lava alternate, being either covered by lava or outside the lava area. Likewise when walking
around the border of the lava, the parts between intersections alternate, being either over the lake
or outside the lake. To identify which part is which, we can inspect some pair of intersecting line
segments: check whether they form a clockwise or counterclockwise turn (using the sign of their
cross product), and carefully interpret the result.

https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.4346
https://doi.org/10.1007/3-540-45788-7_8
https://www.researchgate.net/publication/221610859_Improved_Graph-Based_Lambda_Lifting
https://doi.org/10.1007/978-3-540-85373-2_3
https://en.wikipedia.org/wiki/Curve_orientation
https://en.wikipedia.org/wiki/Shoelace_formula
https://en.wikipedia.org/wiki/Intersection_(geometry)#Two_line_segments
https://www.geeksforgeeks.org/check-if-two-given-line-segments-intersect/

Now consider the newly-formed lakes. The border of each new lake consists of a sequence of
parts, alternating between a lake border outside the lava area and a lava border over the original
lake. We can trace each of these new borders by starting from an arbitrary intersection and
alternating between jumping to an adjacent intersection along the original lake border and jumping
to an adjacent intersection along the lava border (being careful to go in the appropriate direction).
This allows us to identify the new lakes and count them.

There is one special case: The border of the lake might not intersect with the border of the lava at
all. This could be because the lava does not touch the lake, or because the lake is entirely covered
by lava. It is possible to distinguish between them by picking an arbitrary point on the lake and
checking if it's inside the lava area using a point-in-polygon algorithm.

https://en.wikipedia.org/wiki/Point_in_polygon

